Правила сложения квадратных степеней

Сложение, вычитание, умножение, и деление степеней

Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками.

Так, сумма a 3 и b 2 есть a 3 + b 2 .
Сумма a 3 — b n и h 5 -d 4 есть a 3 — b n + h 5 — d 4 .

Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

Так, сумма 2a 2 и 3a 2 равна 5a 2 .

Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

Но степени различных переменных и различные степени одинаковых переменных, должны слагаться их сложением с их знаками.

Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .

Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .

Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

Из2a 43h 2 b 65(a — h) 6
Вычитаем-6a 44h 2 b 62(a — h) 6
Результат8a 4-h 2 b 63(a — h) 6

Или:
2a 4 — (-6a 4 ) = 8a 4
3h 2 b 6 — 4h 2 b 6 = -h 2 b 6
5(a — h) 6 — 2(a — h) 6 = 3(a — h) 6

Умножение степеней

Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.

Первый множительx -33a 6 y 2a 2 b 3 y 2
Второй множительa m-2xa 3 b 2 y
Результатa m x -3-6a 6 xy 2a 2 b 3 y 2 a 3 b 2 y

Или:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a 5 b 5 y 3 .

Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.

Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

Так, a n .a m = a m+n .

Для a n , a берётся как множитель столько раз, сколько равна степень n;

И a m , берётся как множитель столько раз, сколько равна степень m;

Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .

Первый множитель4a nb 2 y 3(b + h — y) n
Второй множитель2a nb 4 y(b + h — y)
Результат8a 2nb 6 y 4(b + h — y) n+1

Или:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h — y) n ⋅ (b + h — y) = (b + h — y) n+1

Умножьте (x 3 + x 2 y + xy 2 + y 3 ) ⋅ (x — y).
Ответ: x 4 — y 4 .
Умножьте (x 3 + x — 5) ⋅ (2x 3 + x + 1).

Это правило справедливо и для чисел, показатели степени которых — отрицательные.

1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

2. y -n .y -m = y -n-m .

3. a -n .a m = a m-n .

Если a + b умножаются на a — b, результат будет равен a 2 — b 2 : то есть

Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

Если умножается сумма и разница двух чисел, возведённых в квадрат, результат будет равен сумме или разнице этих чисел в четвёртой степени.

Так, (a — y).(a + y) = a 2 — y 2 .
(a 2 — y 2 )⋅(a 2 + y 2 ) = a 4 — y 4 .
(a 4 — y 4 )⋅(a 4 + y 4 ) = a 8 — y 8 .

Деление степеней

Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

Таким образом a 3 b 2 делённое на b 2 , равно a 3 .

Делимое9a 3 y 4a 2 b + 3a 2d⋅(a — h + y) 3
Делитель-3a 3a 2(a — h + y) 3
Результат-3y 4b + 3d

Запись a 5 , делённого на a 3 , выглядит как $frac$. Но это равно a 2 . В ряде чисел
a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

При делении степеней с одинаковым основанием их показатели вычитаются..

Так, y 3 :y 2 = y 3-2 = y 1 . То есть, $frac = y$.

И a n+1 :a = a n+1-1 = a n . То есть $frac = a^n$.

Делимоеy 2m8a n+m12(b + y) n
Делительy m4a m3(b + y) 3
Результатy m2a n4(b +y) n-3

Или:
y 2m : y m = y m
8a n+m : 4a m = 2a n
12(b + y) n : 3(b + y) 3 = 4(b +y) n-3

Правило также справедливо и для чисел с отрицательными значениями степеней.
Результат деления a -5 на a -3 , равен a -2 .
Также, $frac<1> : frac<1> = frac<1>.frac <1>= frac = frac<1>$.

h 2 :h -1 = h 2+1 = h 3 или $h^2:frac<1> = h^2.frac <1>= h^3$

Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

Примеры решения примеров с дробями, содержащими числа со степенями

1. Уменьшите показатели степеней в $frac<5a^4><3a^2>$ Ответ: $frac<5a^2><3>$.

2. Уменьшите показатели степеней в $frac<6x^6><3x^5>$. Ответ: $frac<2x><1>$ или 2x.

3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
a 2 .a -4 есть a -2 первый числитель.
a 3 .a -3 есть a 0 = 1, второй числитель.
a 3 .a -4 есть a -1 , общий числитель.
После упрощения: a -2 /a -1 и 1/a -1 .

4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .

Сложение и вычитание степеней

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Что такое степень числа

В учебниках по математике можно встретить такое определение:

«Степенью n числа а является произведение множителей величиной а n-раз подряд»

  • a n — степень,

a — основание степени

n — показатель степени

Соответственно, a n = a·a·a·a. ·a

Читается такое выражение, как a в степени n.

Если говорить проще то, степень, а точнее показатель степени (n), говорит нам о том, сколько раз следует умножить данное число (основание степени) на само себя. А значит, если у нас есть задачка, где спрашивают, как возвести число в степень, например число 2, то решается она довольно просто:

  • 2 3 = 2·2·2, где

2 — основание степени

3 — показатель степени

Действия, конечно, можно выполнять и в онлайн калькуляторе — вот несколько подходящих:

Таблица степеней

Здесь мы приведем результаты возведения в степень натуральных чисел от 1 до 10 в квадрат (показатель степени два) и куб (показатель степени 3).

Число

Вторая степень

Третья степень

Свойства степеней: когда складывать, а когда вычитать

Степень в математике с натуральным показателем имеет несколько важных свойств, которые позволяют упрощать вычисления. Всего их пять штук — давайте их рассмотрим.

Свойство 1: произведение степеней

При умножении степеней с одинаковыми основаниями, основание мы оставляем без изменений, а показатели степеней складываем:

  • a m· a n = a m+n

a — основание степени

m, n — показатели степени, любые натуральные числа.

Свойство 2: частное степеней

Когда мы делим степени с одинаковыми основаниями, то основание остается без изменений, а из показателя степени делимого вычитают показатель степени делителя.

a — любое число, не равное нулю

m, n — любые натуральные числа такие, что m > n

Свойство 3: возведение степени в квадрат

Когда возводим степень в степень, то основание степени остается неизмененным, а показатели степеней умножаются друг на друга.

  • (a n ) m = a n · m

a — основание степени (не равное нулю)

m, n — показатели степени, натуральное число

Свойство 4: степень возведения

При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

  • (a · b) n = a n · b n

a, b — основание степени (не равное нулю)

n — показатели степени, натуральное число

Записывайтесь на курсы обучения математике для школьников с 1 по 11 классы!

Свойство 5: степень частного

Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

  • (a : b) n = a n : b n

a, b — основание степени (не равное нулю), любые рациональные числа, b ≠ 0,

n — показатель степени, натуральное число

Сложение и вычитание степеней

Как складывать числа со степенями и как вычитать степени — очень просто. Основной принцип такой: выполняется сначала возведение в степень, а уже потом действия сложения и вычитания. Примеры:

  • 2 3 + 3 4 = 8 + 81= 89
  • 6 3 — 3 3 = 216 — 27 = 189

И еще несколько правил:

  • при наличии скобок — начинать вычисления нужно внутри них
  • только потом возведение производим в степень
  • затем выполняем остальные действия: сначала умножение и деление
  • после — сложение и вычитание

Сложение степеней с разными показателями

В таком случае действуем согласно общему правилу: сначала выполняем возведение в степень каждого числа, затем — производим сложение.

  • 2 3 + 2 4 = 8 + 16= 24

Сложение степеней с разными основаниями

В целом, это ничем не отличается от предыдущего пункта. Могут быть разные основания, но одинаковые степени. А могут быть и разные основания, и разные показатели. Поэтому сначала выполняем возведение в степень каждого числа, затем — производим сложение.

  • 3 4 + 5 4 =81 + 625 = 706
  • 1 4 + 7 2 = 1+ 49 = 50

Как складывать числа с одинаковыми степенями

Точно также, как и в предыдущем примере. Если степени одинаковые, а основания разные, то нельзя сложить основания и затем эту сумму возводить в степень.
Сначала возводим каждое число в степень и затем выполняем сложение.

  • 6 3 +3 3 = 216 + 27 = 243

В уравнениях это будет происходить немного иначе. Если показатель и основание степени одинаковые (тогда это называется переменная, a 2 , например) — их коэффициенты можно складывать. Коэффициент — это число перед переменной a 2 .

  • 2a 2 + 3a 2 = 5a 2

2, 3, 5 — коэффициенты

a 2 — переменная

Если перед переменной в уравнении нет коэффициента, это значит, что он равен 1.

Вычитание степеней с одинаковым основанием

Здесь принцип тот же, что и со сложением: возводим в степень числа и только потом вычитаем их.

  • 6 3 — 3 3 = 216 — 27 = 189

Вычитание степеней с разными основаниями

Могут быть разные основания, но одинаковые степени. А могут быть и разные основания, и разные показатели. Поэтому сначала выполняем возведение в степень каждого числа, затем — производим вычитание.

  • 5 4 — 4 4 = 625 — 256 = 369
  • 7 4 — 3 2 = 2401 — 9 = 2392

Вычитание чисел с одинаковыми степенями

Все точно также, как и со сложением. Если степени одинаковые, а основания разные, то нельзя вычесть основания и затем эту разницу возводить в степень. Сначала возводим каждое число в степень и затем выполняем вычитание.

  • 6 3 — 3 3 = 216 — 27 = 189

И та же история с коэффициентами: если показатель степени и основание степени одинаковые (тогда это называется переменная, a 2 ) — их коэффициенты можно вычитать. Коэффициент — это число перед переменной a 2 .

  • 6a 2 − 3a 2 = 3a 2

6 и 3 — коэффициенты

a 2 — переменная

Если перед переменной в уравнении нет коэффициента, это значит, что он равен 1.

Свойства степени

Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

Свойство № 1
Произведение степеней

Запомните!

При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

a m · a n = a m + n , где « a » — любое число, а « m », « n » — любые натуральные числа.

Данное свойство степеней также действует на произведение трёх и более степеней.

  • Упростить выражение.
    b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
  • Представить в виде степени.
    6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
  • Представить в виде степени.
    (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15

Важно!

Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.

Нельзя заменять сумму (3 3 + 3 2 ) на 3 5 . Это понятно, если
посчитать (3 3 + 3 2 ) = (27 + 9) = 36 , а 3 5 = 243

Свойство № 2
Частное степеней

Запомните!

При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

m : a n =—>

a m
a n

= a m − n , где « a » — любое число, не равное нулю, а « m », « n » — любые натуральные числа такие, что « m > n ».

  • Записать частное в виде степени
    (2b) 5 : (2b) 3 = (2b) 5 − 3 = (2b) 2
  • Вычислить.
    11 3 · 4 2
    11 2 · 4

    = 11 3 − 2 · 4 2 − 1 = 11 · 4 = 44

  • Пример. Решить уравнение. Используем свойство частного степеней.
    3 8 : t = 3 4

Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

  • Пример. Упростить выражение.
    4 5m + 6 · 4 m + 2 : 4 4m + 3 = 4 5m + 6 + m + 2 : 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5

Важно!

Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

Нельзя заменять разность (4 3 −4 2 ) на 4 1 . Это понятно, если посчитать (4 3 −4 2 ) = (64 − 16) = 48 , а 4 1 = 4

Свойство № 3
Возведение степени в степень

Запомните!

При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

(a n ) m = a n · m , где « a » — любое число, а « m », « n » — любые натуральные числа.

  • Пример.
    (a 4 ) 6 = a 4 · 6 = a 24
  • Пример. Представить 3 20 в виде степени с основанием 3 2 .

По свойству возведения степени в степень известно, что при возведении в степень показатели перемножаются, значит:

Свойства 4
Степень произведения

Запомните!

При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

(a · b) n = a n · b n , где « a », « b » — любые рациональные числа; « n » — любое натуральное число.

  • Пример 1.
    (6 · a 2 · b 3 · c ) 2 = 6 2 · a 2 · 2 · b 3 · 2 · с 1 · 2 = 36 a 4 · b 6 · с 2
  • Пример 2.
    (−x 2 · y) 6 = ( (−1) 6 · x 2 · 6 · y 1 · 6 ) = x 12 · y 6

Важно!

Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

  • Пример. Вычислить.
    2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000
  • Пример. Вычислить.
    0,5 16 · 2 16 = (0,5 · 2) 16 = 1

В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

Например, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216

Пример возведения в степень десятичной дроби.

Свойства 5
Степень частного (дроби)

Запомните!

Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

(a : b) n = a n : b n , где « a », « b » — любые рациональные числа, b ≠ 0, n — любое натуральное число.

  • Пример. Представить выражение в виде частного степеней.
    (5 : 3) 12 = 5 12 : 3 12

Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

Корень и его свойства

Тема в математике «Корень и его свойства» нередко вызывает затруднения у школьников, особенно при решении примеров. В данной статье описаны основные свойства корней, а также правила сложения, вычитания, умножения и деления. Наглядные примеры помогаю понять, как решать задания с корнями.

Определение «Корень»

Корень второй степени (квадратный корень) из числа a — это число, которое становится равным a, если число a возвести во вторую степень (в квадрат).
Например, √ 64 = 8 (√ 64 равно числу 8).

Формула: a 2 = a

Число, стоящее под знаком корня, называется подкоренным числом. Если под знаком корня стоит целое выражение, то его называют подкоренным выражением.
Свойство квадратного корня: для действительных чисел не существует квадратный корень из отрицательного числа, так как возведение числа в квадрат будет всегда неотрицательным числом.

Извлечение корней: примеры

Извлечь корень — значит найти значение корня (то есть найти число, при возведении которого в степень, получается подкоренное значение).
Например, извлечь корень из 64 – значит найти √ 64 .

Найти корень из числа можно одним из следующих способов:

  • Использование таблицы квадратов, таблицы кубов и т.д. В данном случае нужно просто найти нужное число в таблице и посмотреть, какому значению оно соответствует.

Приведение корней с разными показателями

Для того, чтобы упростить выражение с корнями, которое содержит корни разных степеней, необходимо привести все корни к одной степени.

Для этого воспользуемся следующим свойством дроби: a = n √ a n .

Например, есть квадратный корень (второй степени √ 2 ) и кубический корень (третьей степени 3 √ 3 ).
Во-первых, необходимо найти наименьшее общее кратное (НОК) для степеней. В нашем примере НОК=6 (2х3).
Во-вторых, применим свойство a = n √ a n : √ 2 = 2 √ 2 = 6 √ 2 3 = 6 √ 8 ; 3 √ 3 = 6 √ 3 2 = 6 √ 9
Получилось два корня одинаковой степени, с которыми можно совершать различные математические действия.

Корень: сложение и вычитание корней

Основное правила сложения и вычитания квадратных корней: сложение и вычитание квадратного корня возможны только при условии одинакового подкоренного выражения.

Примеры:
2√ 3 + 3√ 3 = 5√ 3
2√ 3 + 2√ 4 – не выполняется.

При этом, нужно рассмотреть возможность упростить выражения.
Пример: 2√ 3 + 3√ 12 = 2√ 3 + 3√ 2х2х3 = 2√ 3 + 3√ 2 2 х3 = 2√ 3 + 6√ 3 = 8√ 3 .

Алгоритм действия:
1. Упростить подкоренное выражение путем разложения на простые множители.
2. Затем нужно извлечь корень из квадратного числа и записать полученное значение перед знаком корня.
3. После процесса упрощения необходимо подчеркнуть корни с одинаковыми подкоренными выражениями — только их можно складывать и вычитать.
4. У корней с одинаковыми подкоренными выражениями необходимо сложить или вычесть множители, которые стоят перед знаком корня. Подкоренное выражение остается без изменений. Нельзя складывать или вычитать подкоренные числа!

Корень: умножение

Умножение корней без множителей

Произведение корней из чисел равно корню из произведения этих чисел.
√ a*b =√ a *√ b
Важно: между собой можно умножать только одинаковые степени корней, то есть можно умножить один квадратный корень на другой, но нельзя умножить квадратный корень на корень кубической степени.
Примеры:
√ 2 х √ 3 = √ 6
√ 6 х √ 3 = √ 18 = √ 3х3х2 = 3√ 2

Умножение корней с множителями

При умножении корней с множителями нужно отдельно перемножить множители и подкорневые выражения (числа). Подкорневые числа можно перемножать между собой только в том случае, если они имеют одинаковые степени (см. умножение корней без множителей). В случае отсутствия множителя, он равен единице.
Примеры:
3
√ 2 х √ 5 = (3х1) √ (2*5) = 3√ 10

4√ 2 х 3√ 3 = (3х4) √ (2х3) = 12√ 6

Корень: деление

Основной правило деления — подкоренные выражения делятся на подкоренные выражения, а множители на множители.
√ a:b =√ a :√ b
В процессе деления квадратных корней дроби упрощаются.

Деление корней без множителей

Частное корней из чисел равно корню из частного этих чисел.
Важно: между собой можно делить только одинаковые степени корней, то есть можно делить один квадратный корень на другой, но нельзя делить квадратный корень на корень кубической степени.
Пример. √ 21 :√ 3 =√ 21:3 =√ 7

Деление квадратных корней с множителями

При делении корней с множителями нужно отдельно разделить множители и подкорневые выражения (числа). Подкорневые числа можно делить между собой только в том случае, если они имеют одинаковые степени. В случае отсутствия множителя, он равен единице.
Пример. 12√ 32 : 6√ 16 = (12:6) √ (32:16) = 2√ 2 .

Примеры для практики

Чтобы попрактиковаться решать примеры на вычисление квадратный корней, можно скачать программу «Корни квадратные«

Правила умножения и деления степеней

Степенью n для числа а является произведение множителей, которые по величине равны а, взятое n раз.

здесь а представляет собой основание степени, n определяет ее показатель.

Таким образом, можно составить формулу:

a n = a × a × a … × a

Запись можно прочитать, как «a в степени n».

Степенное выражение представляет собой такое выражение, в состав которого входит степень.

Перед тем, как рассмотреть действия со степенными выражениями, полезно вспомнить свойства степени:

  1. Произведение степеней. Если степени, которые требуется умножить, имеют одинаковые основания, то основание оставляют неизменным, а показатели степеней суммируют. То есть, a n × a m = a m + n , где а является основанием степени, n и m — это показатели степени в виде каких-либо натуральных чисел.
  2. Частное степеней. При делении степеней, имеющих одинаковые основания, следует оставить основание прежним, а показатель степени делимого уменьшить на показатель степени делителя. Например, a m a n = a m — n , где а является основанием степени, n и m — это показатели степени в виде каких-либо натуральных чисел, m > n .
  3. Возведение степени в квадрат. При возведении степени в степень основание степени сохраняют прежним, а показатели перемножают. К примеру, ( a n ) m = a n × m , где а является основанием степени, n и m — это показатели степени в виде каких-либо натуральных чисел.
  4. Степень произведения. Для того чтобы возвести в степень произведение, требуется каждый из множителей возвести в эту степень. Результаты, которые получились в итоге, необходимо перемножить. То есть: ( a × b ) n = a n × b n , где а и b являются основаниями степени, n — это показатель степени в виде какого-либо натурального числа.
  5. Степень частного. Для возведения в степень частного нужно возвести в данную степень по отдельности делимое и делитель. Затем первый получившийся результат следует разделить на второй. К примеру, ( a ÷ b ) n = a n ÷ b n , где а и b являются основаниями степени, не равными нулю, n — это показатель степени в виде какого-либо натурального числа.

Правила умножения, что происходит

Если степени имеют одинаковые показатели, то в процессе их перемножения следует умножить между собой основания, а показатель записать без изменений:

a n × b n = ( a ÷ b ) n ,

где а и b являются основаниями степени, n — это показатель степени в виде какого-либо натурального числа.

В качестве примера решим несколько простых уравнений:

a 5 × b 5 = ( a × a × a × a × a ) × ( b × b × b × b × b ) = ( a × b ) n = ( a b ) × ( a b ) × ( a b ) × ( a b ) × ( a b ) = ( a b ) 5

3 5 × 4 5 = ( 3 × 4 ) 5 = 12 5 = 248832

16 a 2 = 4 2 × a 2 = ( 4 a ) 2

Когда требуется найти произведение степеней, которые обладают одинаковыми основаниями, следует сложить показатели степеней:

a n × a m = a m + n , где а является основанием степени, n и m — это показатели степени в виде каких-либо натуральных чисел.

В качестве примеров рассмотрим несколько вычислений:

3 5 × 3 2 = 3 5 + 3 = 3 8 = 6561

2 8 × 8 1 = 2 8 · 2 3 = 2 11 = 2048

При умножении чисел, которые имеют разные степени, но схожи по основаниям, необходимо руководствоваться правилом, рассмотренным в предыдущем примере. То есть:

a n × b n = ( a × b ) n ,

где а и b являются основаниями степени, n — это показатель степени в виде какого-либо натурального числа.

Бывают ситуации, когда числа отличаются по степеням и по основаниям, а также какое-то из оснований невозможно преобразовать в число с аналогичной степенью, как у второго числа. В этом случае нужно возвести в степень каждое число, а на втором шаге выполнить умножение.

3 3 × 5 2 = 27 × 25 = 675

Правила деления

Когда требуется выполнить деление степеней, которые имеют разные основания, но схожи по показателям, нужно найти разность показателей и оставить основание без изменений:

a m a n = a m — n ,

где а является основанием степени, n и m — это показатели степени в виде каких-либо натуральных чисел, m>n.

В качестве примеров рассмотрим несколько выражений:

11 3 × 4 4 11 × 4 2 = 11 3 — 1 × 4 4 — 2 = 11 2 × 4 2 = ( 11 × 4 ) 2 = 1936

2 a 4 2 a 3 = 2 a 4 — 3 = 2 a

Деление степеней, которые имеют одинаковые показатели, подразумевает возведение результата частного данных чисел в степень:

a n ÷ b n = ( a ÷ b ) n ,

где а и b являются основаниями степени в виде любых рациональных чисел, не равных нулю, n — это показатель степени в виде какого-либо натурального числа.

5 12 ÷ 3 12 = ( 5 ÷ 3 ) 12 = ( 1 2 3 ) 12

Предположим, что требуется выполнить деление чисел со степенями. При этом степени не одинаковые, а основания идентичные. Тогда следует руководствоваться правилом, рассмотренным в предыдущем примере:

a m a n = a m — n

В том случае, когда отличаются не только степени, но и основания, необходимо возвести в степень каждое из чисел, а затем выполнить умножение. Например:

3 3 5 2 = 27 25 = 1 , 08

Примеры решения заданий для 7 класса

Воспользуемся правилом умножения степеней, имеющих одинаковое основание:

2 3 × 2 2 = 2 5 = 32

Воспользуемся правилом умножения степеней, имеющих одинаковое основание, чтобы избавиться от необходимости возводить число в большую степень:

2 7 = 2 3 × 2 4 = 8 × 16 = 128

Воспользуемся правилом умножения степеней, имеющих разные основания, но одинаковые показатели:

3 2 × 2 2 = ( 3 × 2 ) 2 = 6 2 = 36

Здесь можно применить правило деления степеней с одинаковым основанием и разными показателями:

3 3 3 2 = 3 3 — 2 = 3 1 = 3

Здесь можно применить правило деления степеней с одинаковым основанием и разными показателями:

2 2 2 2 = 2 2 — 2 = 3 0 = 1

Воспользуемся свойством деления степеней, когда основания отличаются, а показатели совпадают:

Читайте также  Отключение от центрального отопления
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector
Для любых предложений по сайту: [email protected]